
Journal of VLSI Signal Processing 2007

* 2007 Springer Science + Business Media, LLC. Manufactured in The United States

DOI: 10.1007/s11265-007-0112-3

Data Reuse Exploration for Low Power Motion Estimation Architecture

Design in H.264 Encoder

YU-HAN CHEN, TUNG-CHIEN CHEN, CHUAN-YUNG TSAI, SUNG-FANG TSAI

AND LIANG-GEE CHEN

DSP/IC Design Lab., Graduate Institute of Electronics Engineering and Department of Electrical Engineering,
National Taiwan University, Taipei, Taiwan

Received: 27 March 2007; Revised: 11 May 2007; Accepted: 13 June 2007

Abstract. Data access usually leads to more than 50% of the power cost in a modern signal processing system.

To realize a low-power design, how to reduce the memory access power is a critical issue. Data reuse (DR) is a

technique that recycles the data read from memory and can be used to reduce memory access power. In this

paper, a systematic method of DR exploration for low-power architecture design is presented. For a start, the

signal processing algorithms should be formulated as the nested loops structures, and data locality is explored by

use of loop analysis. Then, corresponding DR techniques are applied to reduce memory access power. The

proposed design methodology is applied to the motion estimation (ME) algorithms of H.264 video coding

standard. After analyzing the ME algorithms, suitable parallel architectures and processing flows of the integer

ME (IME) and fractional ME (FME) are proposed to achieve efficient DR. The amount of memory access is

respectively reduced to 0.91 and 4.37% in the proposed IME and FME designs, and thus lots of memory access

power is saved. Finally, the design methodology is also beneficial for other signal processing systems with a

low-power consideration.

Keywords: parallel processing, data reuse, motion estimation, H.264

1. Introduction

Power becomes the first-class design issue nowadays

[1]. One of the reasons is the emerging mobile

applications. Because the capacity of battery in

portable devices is limited, power should be used

economically to provide longer service time. In

addition, it is also important to constrain power

consumption in high performance computing sys-

tems. Too much power consumption within a small

silicon area leads to severe thermal problems. It

increases the cost of heat disposal and reduces

reliability of the system.

For multimedia applications, data access is usually

a significant part of power consumption—50 to 80%

in the image and video processing systems [2]. For

this reason, reduction of memory access power

becomes important in modern designs. In a data-

driven signal processing algorithm, many data are

requested from memory several times. Data read

from memory for one process may also be required

for other processes in the future. If the temporal data

locality can be exploited, power consumption can be

saved. Hence, data reuse (DR), recycling previously

accessed data, is an important technique to reduce

memory access power for low-power systems.

At the architecture-level, DR can be achieved with

two techniques—memory hierarchy [3, 4] and

parallel processing. For a memory hierarchy design,

the frequently accessed data are pre-stored in the on-

NO70112; No. of Pages 16



chip SRAMs and off-line reused for the future

access. For a parallel processing design, the data

read from memory are immediately shared between

several processing engines (PE) and on-line reused.

Therefore, memory access power of a signal pro-

cessing system can be saved with customized mem-

ory hierarchy and parallel architecture. This is the

reason why ASIC designs tend to be more power-

efficient than processor designs. For example, an

ASIC design [5] and a processor design [6] respec-

tively consume 18 mW and 1.76 W for VGA

(640� 480 ) MPEG-4 [7] Simple Profile video

encoding at 30 fps with the 0:18�m process. The

ASIC design can achieve about one hundred times

power efficiency.

A systematic method of DR exploration for low-

power architecture design will be presented in this

paper. A signal processing algorithm should be

formulated as a nested loops structure. The nested

loops are first decomposed, and then the data access

pattern in each loop is analyzed to explore DR.

Finally, memory hierarchy and parallel processing

are applied to the suitable loops according to the

characteristics of the algorithms, and the corre-

sponding processing flows and memory data arrange-

ment are also developed to realize a low-power

design.

H.264 [8] is an emerging video coding standard

with high coding gain and good visual quality.

Multiple reference frame (MRF), variable-block size

(VBS), and quarter-pel resolution ME are three useful

tools to improve coding performance in H.264.

However, they also greatly increase the memory

access requirement, and thus corresponding DR

techniques are needed for a low-power consideration.

In this paper, the proposed systematic design method

is applied to the integer ME (IME) and fractional ME

(FME) algorithms in the H.264 encoder. With

analyzing the ME algorithms, suitable hardware

architectures are presented to achieve efficient DR.

The amount of memory access of the IME and FME

designs can be greatly reduced to 0.91 and 4.37%,

respectively. Therefore, it is proven that the proposed

design methodology is useful to reduce memory

access power and beneficial for a low-power design.

The rest of the paper is organized as follows. The

concepts of DR are first described in Section 2. Then,

a systematic method of DR exploration for low-

power architecture design is introduced in Section 3.

In Section 4, the proposed design methodology is

applied to IME and FME algorithms of H.264 to

realize low-power ME engines with efficient DR.

Finally, we will draw a conclusion in Section 5.

2. Data Reuse

For data dominated multimedia applications, a large

number of data access are required. Power consump-

tion of data access is usually a significant part in a

signal processing system. However, in a signal

processing algorithm, data accessed from memory

for one process may also be required for some

processes in the future. If the temporal data locality

is exploited, the amount of memory access can be

reduced and power consumption can be saved. Data

reuse (DR), reuse of previously accessed data, is an

effective technique to reduce memory access power.

In this paper, DR is categorized as off-line DR and

on-line DR. We will introduce the two kinds of DR

schemes in the following.

2.1. Off-Line Data Reuse

Memory access power is dependent on the size and

the technology of the memory. A larger memory

usually consumes more power than a smaller one. In

addition, off-chip DRAMs usually consume more

power than on-chip SRAMs. For this reason, mem-

ory hierarchy [3, 4] is common for low-power

architecture design. On-chip SRAMs are added

between the off-chip DRAMs and registers in the

data path. The frequently accessed data are per-

stored in the on-chip SRAMs and can be off-line

reused for the future access. In this way, most of data

access is changed from off-chip memory access to

on-chip memory access, and thus memory access

power will be greatly reduced. In addition, the

external memory bandwidth (BW) is saved, and it

is beneficial for system performance. The technique

that data are pre-stored in the small memories and

reused in the future is defined as off-line DR.

2.2. On-Line Data Reuse

Traditionally, parallel processing is used to reduce

power with the cooperation of voltage scaling [9].

However, it can also be used to reduce memory

access. Here, we assume there is a datum required

for two processes. If the two processes are in

sequential, two times of data access is needed.

Chen et al.



However, if the two processes are in parallel, the

datum can be only accessed once and then shared

between the processing engines (PE). Hence, the

amount of data access is reduced. The technique that

the accessed data are immediately reused by other

PEs is defined as on-line DR.

Here, bilinear interpolation is taken as an example

to describe how on-line DR can be achieved with

parallel processing. As shown in Fig. 1a, four

reference pixels (A , B , C , and D ) are required to

generate an interpolated pixel (M ). That is to say,

four pixels of memory access are required to

interpolate one pixel. If there are two interpolated

pixels generated in sequential, eight pixels of

memory access are required. However, if the two

neighboring interpolated pixels are generated in

parallel, only six pixels of memory access are

sufficient as shown in Fig. 1b. It is because the

middle two reference pixels can be on-line reused.

Therefore, memory access is reduced by use of

parallel processing.

Memory hierarchy and parallel processing both

can reduce memory access power with the penalty of

increase of hardware resources. As a result, leakage

power [10] will be increased. In this paper, we focus

on reduction of switching power and ignore the

impact of leakage power. If leakage power is taken

into consideration, co-optimization is required for

hardware resources and DR.

3. Systematic Method of Low-Power

Architecture Design

Off-line DR with memory hierarchy and on-line DR

with parallel processing should both be optimized to

minimize memory access power. In this section, a

systematic method of DR exploration for low-power

architecture design will be presented. There are two

assumptions here. First, temporal data locality should

exist in the algorithm. It is because DR cannot be

achieved if the processes are independent to each

other. Second, we assume that the algorithm can be

realized as a form with nested loops. Therefore,

systematic loop analysis can be applied for DR

exploration. The systematic flow of low-power

architecture design is shown in Fig. 2. Two steps,

loop analysis and architecture mapping, are identi-

fied and will be introduced in the following.

Figure 1. Data reuse from parallel processing of bilinear interpolation. a Illustration of bilinear interpolation; b two-parallel processing

with two reusable reference pixels; c four-parallel processing with six reusable reference pixels.

Data Reuse Exploration in H.264 Encoder



3.1. Loop Analysis

For a start, we need to transform the algorithm into a

structure with nested loops. Then, the nested loops

are decomposed in order to apply loop analysis to

each loop.

1. Data reuse exploration: Temporal data locality

should be explored in order to achieve DR. At first,

we have to find the data accessed pattern in each

loop. Then, the overlapped accessed data in each

loop can be found and are potential for DR. There

is a simplified example shown in Fig. 3a. There are

two loops in the algorithm. Inside the Loop j, four

consecutive data are read. Among them, two data

are overlapped in the two consecutive processes of

Loop j . Therefore, Loop j data locality is found,

and it is a candidates for DR. In addition, there are

also lots of overlapped data in two consecutive

processes of Loop i, and thus Loop i data locality is

another candidate for DR.

2. Re-scheduling: In some algorithms, the original

processing flow cannot achieve efficient DR. In

this case, loop interchange may be an effective

way to improve DR efficiency. Here comes an

example. With the original schedule in Fig. 3a,

two overlapped data in the consecutive processes

of Loop j can be on-line reused if parallel

processing is applied. However, if Loop i and

Loop j are interchanged. Three overlapped data in

the consecutive processes of Loop i can be reused

as shown in Fig. 3b. As a result, the on-line DR

efficiency in the lower loop becomes better. In

addition, the memory size can also be reduced

with re-scheduling when we want to achieve off-

line DR. For the original schedule in Fig. 3a,

eight data need to be buffered for off-line DR of

all the required data in the lower loop. After

rescheduling, only six pixels need to be buffered

as shown in Fig. 3b.

3. Algorithm Modification: In some algorithms,

there are data dependencies inside a loop. The

tasks must be processed sequentially, and parallel

processing is not applicable. In addition, there are

data dependencies between two loops in some

algorithms. The processing order is fixed and

cannot be re-scheduled. In those cases, algorithm

modification is required for improvement of DR

efficiency, and it may lead to some penalties. In a

video coding system, the penalty may be the

coding performance degradation. Therefore, there

will be a trade-off between coding performance

and power in this case.

3.2. Architecture Mapping

After loop analysis, we should first decide what

kinds of DR techniques should be applied to the

loops with temporal data locality. There are some

circumstances that parallel processing cannot be

applied. The memory addresses in some algorithms

are dependent on a variable which will be changed in

some loops. In that case, the amount of overlapped

data will be variable. The total numbers of required

data accessed in parallel are not fixed, and it leads to

a problem of parallel memory access. Therefore,

parallel processing is not suitable for those loops

with variable addresses. On the other hand, it is more

Figure 2. Systematic flow of low-power architecture design.

Chen et al.



suitable to apply parallel processing in the lower loops.

It is because fewer data should be accessed in parallel,

and fewer PEs are required. As shown in Fig. 3a, six

pixels are required to be accessed in parallel for two

parallel processes in Loop j , but nine pixels are

required for two parallel processes in Loop i . In

conclusion, the overlapped data in the lower loops are

more suitable to be on-line reused with parallel

architecture design. On the contrary, the overlapped

data in the higher loops are more suitable to be off-line

reused by means of memory hierarchy design.

Secondly, we need to decide how many degrees of

parallelism are required. Bilinear interpolation in

Fig. 1 is taken as an example. Here, we define a

factor AAPBI , which stands for average accessed

pixels for one bilinear-interpolated pixel. AAPBI can

be calculated by

AAPBI ¼
Total numbers of accessed pixels

Total numbers of interpolated pixels
ð1Þ

AAPBI is 4 for sequentially interpolated pixels. If

two pixels are interpolated in parallel as shown in

Fig. 1b, AAPBI is decreased to 3 (6=2). Furthermore,

AAPBI will be reduced to 2:5 (10=4 ) if four hor-

izontally adjacent pixels are generated in parallel as

shown in Fig. 1c. Thus it can be seen that more

degrees of parallelism will result in more memory

access reduction, but it also leads to more hardware

resources. Finally, the degrees of parallelism will be

dependent on both the area and power constrains.

Memory access requirement is different between

distinct parallel architectures. As shown in Fig. 1,

there are 2� 2 , 2� 3 , and 2� 5 reference pixels

needed to be accessed in parallel for 1-PE, 2-PE, and

4-PE architectures, respectively. More degrees of

parallelism usually means more memory bitwidth

requirement. Therefore, memory data should be

arranged according to the parallel architecture to

achieve the memory access requirement.

4. Design Examples

In this section, we will first introduce the motion

estimation (ME) algorithm of H.264. Then, the

systematic method of DR exploration is applied to

the IME and FME algorithms in H.264. Finally, the

corresponding hardware architectures are presented.

Figure 3. Data reuse exploration with loop analysis. a Original nested loops; b Loop i and Loop j are interchanged.

Data Reuse Exploration in H.264 Encoder



4.1. Motion Estimation Algorithm of H.264

ME is a powerful coding tool used to remove

temporal redundancy in a video sequence. For each

macroblock (MB) in the current frame, a best

matching block insides the search window (SW) of

the reference frame will be found as depicted in Fig. 4.

Then, the motion vector (MV) and the residues, the

differences between the current and the best matching

MBs, are coded. In H.264, multiple reference frame

(MRF), variable block-size (VBS), and quarter-pel

resolution ME algorithms are adopted to further

improve coding performance. In the following, we

will introduce these three coding tools.

1. Multiple reference frame: In the previous video

coding standard, only one reference frame is

supported in the process of ME. However, MRF-

ME in H.264 provides at most five reference frames,

and it is useful to improve coding performance for

uncovered backgrounds, repetitive motions, and

highly textured areas [11]. Although MRF is good

for coding performance, the amount of memory

access is increased with the number of reference

frames. Without effective DR techniques, memory

access power will be greatly increased.

2. Variable block-size: In the conventional ME

algorithm, only one block size, 16� 16 , is

supported. In H.264, there are seven kinds of

block-sizes, comprising 4� 4, 4� 8, 8� 4, 8� 8,

8� 16, 16� 8, and 16� 16. VBS-ME can obtain

good compression efficiency in a region with

complex motion [12]. In the reference software

[13], ME of seven block-sizes are performed

sequentially. For IME, all the sum of absolute

difference (SAD) costs of the 4� 4 block-size are

pre-calculated and saved in a buffer. Then, the

results can be off-line reused for all other larger

block-sizes. However, the buffer of the 4� 4

SAD costs is too large to be implemented in a

dedicated hardware. For a 32� 32 search range,

the buffer size is 192k-bit (32� 32� 16� 12).

Therefore, on-line SAD calculation for VBS IME

should be adopted. In this manner, the SAD costs

cannot be reused, and the amount of memory

access becomes seven times as compared to the

conventional single-block-sized algorithm. Mem-

ory access power is greatly increased and

becomes a serious problem.

3. Quarter-pel resolution: Half and quarter-pel re-

finement is supported in the FME algorithm of

H.264 and performed sequentially as illustrated in

Fig. 5a. Sum of absolute transformed difference

(SATD) is used as the matching cost of FME.

Block matching of eight half-pel and one integer-

pel candidates are conducted in the first pass of

refinement. Then, the matching costs of eight

quarter-pel candidates around the best candidate

in the first pass are computed for quarter-pel

refinement. Finally, the best matching block with

quarter-pel resolution is found. A six-tap filter is

applied to interpolate the pixels at the half-pel

position as shown in Fig. 5b, and the quarter-pel

data are generated with bilinear interpolation. (I, I),

(I, H), (H, I), and (H, H) respectively stand for the

search candidates in the horizontal-integer and

Figure 4. Illustration of ME algorithm. A best matching block will be found inside a search window of the reference frame.

Chen et al.



vertical-integer, horizontal-integer and vertical-

half, horizontal-half and vertical-integer, and hori-

zontal-half and vertical-half positions. In H.264, six

integer pixels are required to generate one (I, H) or

one (H, I) interpolated pixel, and 6� 6 integer

reference pixels are needed for an (H, H) one. As a

result, the amount of memory access is greatly

increased. In the reference software [13], all the

half-pel and quarter-pel interpolated pixels in a

frame are pre-computed, saved in a buffer, and off-

line reused. But for dedicated hardware realization,

the buffer cost (16� frame size) is too high to be

implemented, and on-line fractional-pel interpola-

tion is inevitable. Without efficient DR, lots of

memory access will be required.

4.2. Integer Motion Estimation

1. Loop analysis: The nested loops of the IME

algorithm in the reference software [13] is shown

in Fig. 6. AAPIME, average accessed pixels for one

IME search candidate, is defined to indicate DR

efficiency of memory access for IME and can be

calculated by

AAPIME ¼
Total numbers of accessed pixels

Total numbers of search candidates

ð2Þ

Loop 1 : the MB index in a current frame. For

each MB, block matching is applied

inside a SW. However, the SWs of the

neighboring current MBs are overlapped,

and thus the overlapped reference data

can be reused. Because the amount of

data in the SW is large, memory hierar-

chy design is adopted. SW SRAMs are

commonly used in most of the ME

designs for off-line DR. Level-C DR is

a technique that can achieve horizontally

inter-MB DR, and Level-D DR can

achieve both horizontally and vertically

inter-MB DR. They are both frequently

used to reduce external memory BW.

Please reference [14] for the details.

Loop 2 : the block index for VBS-ME. In H.264,

there are 41 blocks with seven kinds of

block-sizes in a MB. As mentioned in

Sec. 4.1.2, a sequential flow is adopted

for VBS IME in the reference software

[13], and it cannot achieve efficient DR

for hardware implementation. To solve

this problem, a modified parallel VBS

IME algorithm has been adopted in many

designs [15–18]. Parallel VBS IME al-

gorithm computes all matching costs of

different block-sizes in parallel. For a

search candidate, the costs of 4� 4 is

Figure 5. Illustration of quarter-pel resolution ME. a Flow of fractional motion estimation with two-pass iterations; b six-tap interpolation

filter for the half pixels.

Data Reuse Exploration in H.264 Encoder



computed first, and all other cost of

larger block-sizes are on-line calculated

by summing up the corresponding 4� 4

costs. As a result, computation and

memory access is saved. AAPIME is

reduced from 1792 (256� 7 ) to 256 ,

and 85:71% memory access is reduced.

The technique that the matching costs of

the smaller block-sizes are reused by

larger block-sizes is called inter-VBS

DR of IME.

Loop 3 : the reference frame index. In H.264,

MRF-ME is supported. For a current MB,

ME is applied to several SWs of the

reference frames. With the conventional

multiple reference frames single current

MB schedule, the required on-chip SW

memory size and the amount of off-chip

memory access is proportional to the

number of reference frames. In order to

reduce memory power, DR is required

for the MRF-ME algorithm. Inter-frame

DR can be achieved by use of frame-

level rescheduling–interchange of Loop 0
and Loop 3. The new schedule is called

single reference frame multiple current

MBs. Multiple current MBs of different

current frames can reuse the data inside

the SW of a reference frame. In this way,

only one SW buffer is required, and the

external memory BW is greatly reduced.

Please reference [19] for the details.

Loop 4 : the candidate index in the search range.

For a search candidate, 16� 16 reference

pixels are needed to compute the match-

ing cost. However, a large portion of

reference pixels are overlapped for the

neighboring candidates. Here comes the

examples. For two vertically adjacent

candidates as shown in Fig. 7(a), 15�

16 reference pixels are overlapped. If

those overlapped data can be reused, a

large amount of memory access can be

saved. In this case, AAPIME is reduced

from 256 to 136 (17� 16� 2). DR can

also be achieved for the horizontally

adjacent candidates in the same way as

shown in Fig. 7b. The technique that the

overlapped reference pixels for the

neighboring search candidates are reused

is called inter-candidate DR of IME.

2. Architecture mapping: Parallel 2-D adder tree

architecture [18] is adopted as the basic architec-

ture in our design and shown in Fig. 8. The

current MB is stored in B16� 16 current pel

buffer.^ The reference data in a SW are stored in

the SW SRAMs for inter-MB DR. Reference

pixels are read row-by-row from SW SRAMs and

input to B16� 16 ref-pel systolic array.^ The

original reference pixels in B16� 16 Ref-Pel

Systolic Array^ are shifted forward while a new

row of data are input. To compute the SAD cost

of the first candidate, 16 rows of reference pixels

are input in 16 cycles. Then, only a new row of

reference pixels are needed to compute a new

search candidate below the first one, and 15� 16

reference pixels are reused. In this way, inter-

candidate DR can be achieved between the

vertically adjacent candidates. Residues are

generated in B256 processing unit array,^ and

summed up by B2-D SAD tree.^ Two hundred

fifty-six degrees of parallelism is provided here

to generate 16� 16 absolute difference values

simultaneously for SAD summation. Sixteen

SAD costs of 4� 4 blocks are on-line computed

by B16 2-D adder tree for 4�4-blocks.^ Then, all

the SAD costs of larger block-sizes are calculated

by Bone VBS tree for larger blocks^ with the on-

line generated 4� 4 costs. Therefore, inter-VBS

DR can be achieved in B2-D adder tree.^
For the full search algorithm, after the latency

of 15 cycles, this architecture can process one

candidate per cycle until the end of a column.

However, if we want to compute the SAD costs

of the search candidates in the next column,

another 15-cycle latency is required to fill the

reference data in B16�16 ref-pel systolic array.^
The scan order is shown in Fig. 9a. For a SW with

a 32� 32 search range, 47� 16 reference pixels

Figure 6. Nested loops of integer motion estimation.

Chen et al.



are read from memory for a column of thirty-two

search candidates, and thus AAPIME is 23:5.

The previous architecture can only reuse the

reference data in the vertical direction (as shown

in Fig. 7a). Further memory access reduction can

be achieved if 2-D inter-candidate DR is sup-

ported. For this reason, a snake-scan search flow

is adopted and illustrated in Fig. 9b. At the end of

each column, a column of 16� 1 reference pixels

are read from memory and horizontally inter-

candidate DR is achieved (as shown in Fig. 7b).

Although the concept is simple, it is not straight-

forward for hardware implementation. It is be-

cause 2-D random access is required for memory

access. To solve this problem, a technique called

ladder-shaped SW data arrangement is proposed

and will be introduced latter in Section 4.4. Here,

we assume the SW SRAMs can provide 16� 1 or

1� 16 reference pixels random access. Besides,

to support snake-scan search flow, the B16�16

ref-pel systolic array^ in Fig. 8 is designed with

three configurations—up-shift, down-shift, and

right-shift by on pixels. Finally, with 2-D inter-

candidate DR, AAPIME becomes 16:23 for a 32�
32 search range.

3. Results: Memory access requirement of different

DR techniques is listed in Table 1. With the

proposed architecture, inter-VBS and 2-D inter-

candidate DR can be achieved. Memory access is

reduced to 0:91% as compared to the designs

without DR. By the way, the minimum memory

access occurs if all the reference data in the SW

SRAMs are accessed once. The value of minimal

AAPIME is 2:16 (472=162), which is about 13:31%

of the proposed design. However, much more

degrees of parallelism are required to achieve the

minimal memory access of IME. In that case, the

area cost will be extremely high.

Figure 7. Inter-candidate data reuse for integer motion estimation. The overlapped (grey) region of reference pixels of search candidate C0

and C1 can be reused to reduce memory access. a Vertical data reuse; b horizontal data reuse.

Figure 8. 2-D adder tree architecture for the integer motion estimation engine.

Data Reuse Exploration in H.264 Encoder



The presented IME architecture is implemented

with 0:18�m technology. The logic gate count is

65k. Full search algorithm is supported in a search

range of H[j16, 15] and V[j16, 15] with one

reference frame, and 1=2 sub-sampling and 3-bit

pixel truncation are adopted for reduction of SAD

computation. Power consumption measured from

the chip is 6:42mW with 1:3V supply voltage and

13:5 MHz operating frequency for CIF 30 fps

format videos. In [20], Lin et al. proposes a 16

1-D adder tree architecture (256-PE) for the full

search algorithm, and only 1-D inter-candidate

DR is supported. The reported power consump-

tion for 0:25�m process and 2:5V supply voltage

is 46:52mW. Although the normalized power of

this design for 0:18�m process and 1:3V supply

voltage is similar to ours, the functionality of

VBS-ME is not supported. In [21], a low-power

ME engine based on 1-D adder tree architecture

(16-PE) is proposed. In this design, a fast

algorithm is adopted to reduce computation to

1=25, and no DR can be achieved in this archi-

tecture. The power consumption is 6:56mW for

0:18� m process and 1:0 V supply voltage.

Compared to the previous work, our design

achieves the best DR efficiency and consumes

the least power. It is shown that DR is critical for

low-power design.

4.3. Fractional Motion Estimation

1. Loop analysis: The nested loop structure of FME

algorithm in the reference software [13] is shown

in Fig. 10. The DR techniques about the MB loop

(Loop 1) and the reference frame loop (Loop 3) of

FME are the same with those in IME and will be

skipped here.

Loop 2 : the block index. For FME, different

MVs should be refined for different

blocks. There is no fixed inter-block

data locality. Therefore, parallel process-

ing cannot be applied here for DR.

Loop 5 : the pixel index in a candidate. Here,

Loop 5 is discussed before Loop 4. The 6-

tap interpolation filter defined in H.264

increases the memory access requirement

of FME engine. For example, a 6� 6

window of reference data are required to

generate an (H, H) interpolated pixel. DR

can be explored from the neighboring

interpolated pixels at the same search

candidate. For two horizontally adjacent

(H, H) interpolated pixels, 6� 5 pixels in

the overlapped region of the two interpo-

lation windows could be reused as shown

in Fig. 11a. For an (H, H) search

candidate with the 4� 4 block-size, a 9�
9 window of reference pixels are enough

to generate all the interpolated pixels as

shown in Fig. 11b. In this case, the

required memory access is reduced from

a b
Figure 9. Scan flow of 5� 5 search candidates for integer motion estimation. a Basic scan flow; b advanced snake scan flow.

Table 1. Memory access requirement for integer motion

estimation.

(1) (2) (3) (4) Minimum

AAPIME 1792 256 23:5 16:23 2:16

Ratio 100% 14:29% 1:31% 0:91% 0:12%

A 32� 32 search range is assumed.

(1) No data reuse; (2) inter-VBS data reuse; (3) inter-VBS data

reuse + 1-D inter-candidate data reuse; (4) Inter-VBS data reuse +

2-D inter-candidate data reuse

Chen et al.



576 (4� 4� 6� 6) to 81 (9� 9). This

technique that the required reference data

of neighboring interpolated pixels at the

same search candidate are reused is called

inter-pixel or intra-candidate DR of FME.

Loop 4 : the candidate index. DR can also be

explored between the neighboring search

candidates for FME. Take the half-pel

refinement of a 4� 4 block for example.

There are nine candidates, comprising

one (I, I), two (H, I), two (I, H), and four

(H, H) candidates. With intra-candidate

DR, the (I, I), (H, I), (I, H), and (H, H)

candidates require 4� 4, 4� 9 , 9� 4,

and 9� 9 interpolation windows of ref-

erence data, respectively. However, many

parts of those interpolation windows are

overlapped as shown in Fig. 12. If the

nine search candidate are processed in

parallel, the reference data read from

memory can be shared with each other.

Finally, a 10� 10 window of reference

data are enough to compute the matching

costs of all the nine candidates for half-

pel refinement. In this case, the required

memory access is reduced from 484

( 4� 4þ 2� 4� 9þ 2� 9� 4þ 4�
9� 9) to 100 (10� 10). The technique

that the reference data of neighboring

search candidates are reused is called

inter-candidate DR of FME.

2. Architecture mapping: Based on the analysis of

[22], the basic hardware architecture of FME

engine is shown in Fig. 13. The 4� 4 block-size

is the smallest element of VBS, and the SATD

computation is also based on 4� 4 blocks. In

addition, all other larger block-sizes can be

decomposed into several 4� 4 -elements with

the same MV. Therefore, a 4� 4-processing unit

(PU) is designed and reused for larger blocks by

use of folding. For the low-power consideration,

intra-candidate and inter-candidate DR are both

applied in this architecture. For horizontal filter-

ing, six reference pixels are required to interpo-

late one half pixel while nine pixels are needed

for four adjacently half-interpolated pixels in a

row of a search candidate. Furthermore, ten

reference pixels are enough to generate a row of

the required data for three horizontally adjacent

search candidates as shown in Fig. 12. Therefore,

a row of ten reference pixels are read from SW

SRAMs and input to the row-parallel interpolation

engine in a cycle. Then, a rows of interpolated

pixels are generated at the same time. For intra-

candidate DR, each 4� 4-element PU is designed

Figure 10. Nested loops of fractional motion estimation.

a b
Figure 11. Intra-candidate data reuse for fractional motion estimation. a Reference pixels in the overlapped (grey) interpolation windows

for two horizontally adjacent interpolated pixels P0 and P1 can be reused; b overlapped (grey) interpolation windows data reuse for a 4� 4

interpolated block. Totally, 9� 9 reference pixels are enough with the technique of intra-candidate data reuse.

Data Reuse Exploration in H.264 Encoder



with four degrees of parallelism to process four

horizontally adjacent pixels of a candidate at the

same time. For inter-candidate DR, nine 4� 4-

element PUs is arranged to process the nine

search candidates in parallel. Totally, 36 degrees

of parallelism are provided. In this way, the

interpolated fractional pixels are reused, and the

redundant computation of interpolation operation

is saved. Besides, the on-chip memory BW of SW

SRAMs for reading reference pixels is also be

decreased. In summary, not only logic power but

also memory access power is reduced.

Because the proposed architecture is based on a

4� 4 PU, VBS should be decomposed into

several 4� 4 blocks which are processed sequen-

tially. The basic processing flow in [22] is shown

in Fig. 14a. Because only 1-D random access of

SW SRAMs is supported in [22], the 4� 4 blocks

are strung up in the vertical direction. Therefore,

vertically inter-block DR can be obtained as

depicted in Fig. 15a. For the next column of 4�
4 blocks, reference pixels should be reloaded, and

no DR can be achieved horizontally. With the

basic flow of FME, DR of 4� 8 and 8� 16

Figure 12. Inter-candidate data reuse for half-pel refinement of fractional motion estimation. The overlapped (grey) region of interpolation

windows can be reused to reduce memory access.

Interpolation

Search Window SRAMs

Output
Buffer

Current MB
SRAM

MV/Ref/Mode
Costs

9
costs

4x4Element
PU #0

Lagrangian
Mode

Decision

4x4Element
PU #1

4x4Element
PU #1

4x4Element
PU #0

4x4Element
PU #1

4x4Element
PU #1

4x4Element
PU #0

4x4Element
PU #1

4x4Element
PU #1

Side Information

SATD
ACC

4-parallel
2-D Hadamard
Transform Unit

- - - -

Row of Four Cur. MB Pels &
Four Interpolated Ref. Pels

4x4
SATD +

4x4ElementPU

Figure 13. Hardware architecture for fractional motion estimation engine.

Chen et al.



Data Reuse Exploration in H.264 Encoder

block-sizes is not efficient. However, the proposed

ladder-shaped SW SRAMs data arrangement in

Section 4.4 can provide 2-D random access, and an

advanced flow can be applied as shown in Fig. 14b.

For 4� 8 and 8� 16 block-sizes FME, the 4� 4

sub-blocks can be strung up in the horizontal

direction. Reference pixels are read column-by-

column from SW SRAMs and input to the

interpolation engine. In this case, horizontally

inter-block DR (as shown in Fig. 15b) can be

achieved. Therefore, memory access can be further

reduced.

3. Results: Here, we define a factor AAPFME, which

stands for Average Accessed Pixels for one FME

half-pel search candidate, to indicate the DR

efficiency of a FME engine. AAPFME can be

computed as

AAPFME ¼
Total numbers of accessed pixels

9 ð#: of candidateÞ � 7 ð#: of block sizeÞ
ð3Þ

The amount of memory access for different

block-sizes and AAPFME for different DR tech-

16

8

4

84

16

8

16

16

8

8

8

a

16

8

4

84

16

8

16

16

8

8

8

b
Figure 14. Hardware processing flow of variable-block size fractional motion estimation. a Basic flow; b advanced flow.

a b
Figure 15. Inter-4� 4-block interpolation window data reuse a Vertical data reuse; b horizontal data reuse.



Chen et al.

niques are listed in Table 2. The presented archi-

tecture with the advanced processing flow can

achieve efficient DR and reduce the memory BW

to 4:37% which is very close to the lower bound

of 3:70% with fully inter- and intra-candidate DR.

The proposed FME design is also implemented

with 0:18�m technology. The gate count is 127k.

For real-time CIF 30fps video coding with the full

search FME algorithm, power consumption

reported from gate-level simulation is 22:58mW

at 1:8V and 27 MHz. Because our design is based

on the 4� 4 block engine, full reuse of accessed

reference pixels cannot be achieved. To further

reduce memory access power, a FME engine with

the 16� 16 PU can be designed [23]. In this case,

the area is increased to 189k gates [23], and about

15% memory access power can be further

reduced.

4.4. Ladder-Shaped Search Window Data
Arrangement

In order to support 2-D DR for both the presented IME

and FME designs, memory access capability of

consecutively horizontal or vertical 16 pixels is

required. Here comes a simple example. Physical

location of pixels in the SW is shown in Fig. 16a. The

conventional data arrangement is shown in Fig. 16b.

Horizontally adjacent pixels are arranged in different

banks of SW SRAMs. The first column of reference

pixels, A1–A8, are placed in the bank M1. The second

column of pixels, B1–B8, are placed in the bank

M2, and so on. If there are eight banks of SRAM,

the ninth column of pixels are placed in the first

bank M1. In this way, a row of reference pixels, like

A5–H5, can be read in parallel. However, a column

of reference pixels, like C1–C8, cannot be accessed

Table 2. Memory access requirement for half-pel refinement of fractional motion estimation.

Block-size (1) (2) (3) (4) (5)

16� 16 24832 2482 484 880 880

16� 8 24832 2852 616 1120 880

8� 16 24832 2852 704 880 880

8� 8 24832 3272 784 1120 1120

8� 4 24832 4112 1120 1600 1120

4� 8 24832 4112 1120 1120 1120

4� 4 24832 5152 1600 1600 1600

Total 173824 24834 6428 8320 7600

AAPFME 2759:11 394:19 102:03 132:06 120:63

Ratio 100% 14:29% 3:70% 4:79% 4:37%

(1) No data reuse; (2) only intra-candidate data reuse; (3) full intra-candidate and inter-candidate data reuse; (4) proposed architecture with

the basic processing flow; (5) proposed architecture with the advanced processing flow

a b c
Figure 16. Search Window SRAMs data arrange. a Physical location of reference pixels in the search window; b traditional data

arrangement with 1-D random access; c proposed ladder-shaped data arrangement with 2-D random access.



Data Reuse Exploration in H.264 Encoder

at the same time because they are located in the same

bank M3. This is called 1-D random access.

The ladder-shaped SW data arrangement tech-

nique is depicted in Fig. 16c. The second and third

rows are rotated rightward by one and two pixels.

The other rows are also rotated in the same manner.

In this way, the reference pixels of A5–H5 and C1–

C8 are both put in different banks of SRAMs and can

be accessed in one cycle. Therefore, a row or a

column of pixels can both be accessed in parallel,

and 2-D random access is achieved. As a result, the

proposed data arrangement can enhance random

access capability of SW SRAMs, and improve DR

efficiency of the IME and FME designs.

5. Conclusion

A systematic method of DR exploration for low-

power design is proposed and applied to the IME and

FME algorithms of H.264 in this paper. With the loop

analysis, data locality in the algorithms is first

explored. A large number of required reference pixels

are overlapped and can be reused. Therefore, the

corresponding DR techniques for each loop of the ME

algorithms are presented. With the DR techniques, not

only memory access but also computation can be

saved. Then, suitable parallel architectures and mem-

ory hierarchy design are mapped into the loops in the

algorithm for DR. Finally, a low-power design with

efficient DR is realized. The amount of memory

access of IME and FME designs is reduced to 0.91 and

4.37%, respectively. The design method of DR

exploration for low-power architecture design can

also be extended to other signal processing systems

with a low-power consideration.

Acknowledgements

This work was supported in part by the National

Science Council, Taiwan, R.O.C. under the grant

number NSC95-2752-E-002-008-PAE.

References

1. T. Mudge, BPower: A First-class Architectural Design Con-

straint,^ IEEE Comput., vol. 34, no. 4, pp. 52–58, Apr. 2001.

2. K. Danckaert, K. Masselos, F. Catthoor, H. J. D. Man, and C.

Goutis, BStrategy for Power-Efficient Design of Parallel

Systems,^ IEEE Trans. VLSI Syst., vol. 7, no. 2, 1999, pp.

258–265, June.

3. S. Wuytack, F. Catthoor, L. Nachtergaele, and H. D. Man,

BPower Exploration for Data Dominated Video Applications,^
in Proc. IEEE Int. Conf. on Low Power Electronics and

Design (ISLPED), 1996.

4. S. Wuytack, J.-P. Diguet, F. V. M. Catthoor, and H. J. D. Man,

BFormalized Methodology for Data Reuse Exploration for

Low-Power Hierarchical Memory Mappings,^ IEEE Trans.

VLSI Syst., vol. 6, no. 4, 1998, pp. 529–536, Dec.

5. C.-P. Lin, P.-C. Tseng, Y.-T. Chiu, S.-S. Lin, C.-C. Cheng,

H.-C. Fang, W.-M. Chao, and L.-G. Chen, BA 5mW MPEG4

SP Encoder with 2D Bandwidth-sharing Motion Estimation

for Mobile Applications,^ in ISSCC Digest of Technical
Papers, 2006.

6. H.-J. Stolberg, S. Moch, L. Friebe, A. Dehnhardt, M. B.

Kulaczewski, M. Berekovic, and P. Pirsch, BAn SoC with Two

Multimedia DSPs and a RISC Core for Video Compression

Applications,^ in ISSCC Digest of Technical Papers, 2004.

7. Information Technology—Coding of Audio-Visual Objects—

Part 2: Visual. ISO/IEC 14496-2, 1999.

8. Joint Video Team of ITU-T and ISO/IEC JTC 1, BDraft ITU-T

Recommendation and Final Draft International Standard of

Joint Video Specification,^ Mar. 2003.

9. A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, BLow-

power CMOS Digital Design,^ IEEE J. Solid State Circuits,

vol. 27, no. 4, pp. 473–483, Apr. 1992.

10. W. M. Elgharbawy and M. A. Bayoumi, BLeakage Sources

and Possible Solutions in Nanometer CMOS Technologies,^
IEEE Circuits and Syst. Mag., vol. 5, no. 4, 2005, pp. 6–17.

11. Y. Su and M.-T. Sun, BFast Multiple Reference Frame Motion

Estimation for H.264,^ in Proc. IEEE Int. Conf. on Multimedia

and Expo (ICME), 2004.

12. Y.-H. Chen, T.-C. Chen, and L.-G. Chen, BHardware Oriented

Content-adaptive Fast Algorithm for Variable Block-size

Integer May 25, 2007 DRAFT Motion Estimation in H.264,^
in Proc. IEEE Int. Symposium on Intelligent Signal Processing
and Communication Systems (ISPACS), 2005.

13. Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, H.264/

AVC Reference Software JM8.2. http://bs.hhi.de/ suehring/tml/

download/, May 2004.

14. J.-C. Tuan, T.-S. Chang, and C.-W. Jen, BOn the Data Reuse

and Memory Bandwidth Analysis for Full-Search Block-

Matching VLSI Architecture,^ IEEE Trans. Circuits Syst.

Video Technol., vol. 12, no. 1, 2002, pp. 61–72, Jan.

15. Y.-W. Huang, T.-C. Wang, B.-Y. Hsieh, and L.-G. Chen,

BHardware Architecture Design for Variable Block Size Motion

Estimation in MPEG-4 AVC/JVT/ITU-T H.264,^ in Proc.

IEEE Int. Symposium on Circuits and Systems (ISCAS), 2003.

16. S. Y. Yap and J. V. McCanny, BA VLSI Architecture for

Variable Block Size Video Motion Estimation,^ IEEE Trans.

Circuits Syst. II, vol. 51, no. 7, pp. 384–389, July 2004.

17. H. F. Ates and Y. Altunbasak, BSAD Reuse in Hierarchical

Motion Estimation for the H.264 Encoder,^ in Proc. IEEE Int.

Conf. Acoust., Speech, and Signal Processing (ICASSP), 2005.

18. C.-Y. Chen, S.-Y. Chien, Y.-W. Huang, T.-C. Chen, T.-C.

Wang, and L.-G. Chen, BAnalysis and Architecture Design of

Variable block size Motion Estimation for H.264/AVC,^ IEEE

Trans. Circuits Syst. 1, Fundam. Theory Appl., vol. 53, no. 3,

2006, pp. 578–593.

19. T.-C. Chen, Y.-W. Huang, C.-Y. Tsai, C.-T. Huang, and L.-G.

Chen, BSingle Reference Frame Multiple Current Macroblocks



Chen et al.

Scheme for Multi-Frame Motion Estimation in H.264/AVC,^
in Proc. IEEE Int. Symposium on Circuits and Systems

(ISCAS), 2005.

20. S.-S. Lin, P.-C. Tseng, and L.-G. Chen, BLow-power Parallel

Tree Architecture for Full Search Block-matching Motion

Estimation,^ in Proc. IEEE Int. Symposium on Circuits and

Systems (ISCAS), 2004.

21. J. Miyakoshi, Y. Kuroda, M. Miyama, K. Imamura, H.

Hashimoto, and M. Yoshimoto, BA Sub-mW MPEG-4 Motion

Estimation Processor Core for Mobile Video Application,^ in

IEEE Custom Integrated Circuits Conference (CICC), 2003.

22. T.-C. Chen, Y.-W. Huang, and L.-G. Chen, BFully Utilized

and Reusable Architecture for Fractional Motion Estimation of

H.264/AVC,^ in Proc. IEEE Int. Conf. Acoust., Speech, and

Signal Processing (ICASSP), 2004.

23. C. Yang, S. Goto, and T. Ikenaga, BHigh Performance VLSI

Architecture of Fractional Motion Estimation in H.264 for

HDTV,^ in Proc. IEEE Int. Symposium on Circuits and

Systems (ISCAS), 2006.

Yu-Han Chen was born in Taipei, Taiwan, R.O.C. in 1981.

He received the B.S. degree from the Department of Electrical

Engineering, National Taiwan University, Taipei, Taiwan,

R.O.C. in 2003. He is currently pursuing the Ph.D. degree at

the Graduate Institute of Electronics Engineering, National

Taiwan University. His research interests include image/video

signal processing, motion estimation, algorithm and architec-

ture design of H.264 video coder, and low-power and power-

aware video coding system.

Tung-Chien Chen was born in Taipei, Taiwan, R.O.C. in

1979. He received the B.S. degree in Electrical Engineering

and the M.S. degree in Electronic Engineering from National

Taiwan University, Taipei, Taiwan, R.O.C. in 2002 and 2004,

respectively, where he is working toward the Ph.D. degree in

Electronics Engineering. His major research interests include

motion estimation, algorithm and architecture design of

MPEG-4 and H.264/AVC video coding, and low power video

coding architectures.

Chuan-Yung Tsai was born in Kaohsiung, Taiwan in 1982.

He received his B.S. degree from the Department of Electrical

Engineering, National Taiwan University in 2004. He is

currently pursuing his Ph.D. degree in the Graduate Institute

of Electronics Engineering, National Taiwan University. His

research interests include algorithm and architecture design of

H.264 video encoder/decoder, low-power video coding sys-

tem, and intelligent architecture for video processing.



Data Reuse Exploration in H.264 Encoder

Sung-Fang Tsai was born in Hsinchu, Taiwan, R.O.C. in

1983. He received the B.S. degree in Electrical Engineering

from National Taiwan University, Taipei, Taiwan, R.O.C. in

2005. Now he is working toward the M.S. degree in the

Graduate Institute of Electronics Engineering, National Tai-

wan University. His major research interests include motion

estimation, algorithm and architecture design of H.264/AVC

video coding standard.

Liang-Gee Chen received the B.S., M.S., and Ph.D. degrees in

electrical engineering from National Cheng Kung University,

Tainan, Taiwan, R.O.C. in 1979, 1981, and 1986, respectively.

In 1988, he joined the Department of Electrical Engineering,

National Taiwan University, Taipei, Taiwan. From 1993 to

1994, he was a Visiting Consultant in the DSP Research

Department, AT&T Bell Labs, Murray Hill, NJ. In 1997, he was

a Visiting Scholar of the Department of Electrical Engineering,

University of Washington, Seattle. Currently, he is a Professor

in National Taiwan University.

Dr. Chen has served as an Associate Editor of IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR

VIDEO TECHNOLOGY, IEEE TRANSACTIONS ON VLSI

SYSTEMS, and IEEE TRANSACTIONS CIRCUITS AND

SYSTEMS II since 1996, 1999, and 2000, respectively. He has

been the Associate Editor of the Journal of Circuits, Systems,

and Signal Processing since 1999, and a Guest Editor for the

Journal of Video Signal Processing Systems. He is also the

Associate Editor of the PROCEEDINGS OF THE IEEE. He

was the General Chairman of the Seventh VLSI Design/CAD

Symposium in 1995 and of the 1999 IEEE Workshop on Signal

Processing Systems: Design and Implementation. He is the

Past-Chair of Taipei Chapter of IEEE Circuits and Systems

(CAS) Society and is a member of the IEEE CAS Technical

Committee of VLSI Systems and Applications, the Technical

Committee of Visual Signal Processing and Communications,

and the IEEE Signal Processing Technical Committee of

Design and Implementation of SP Systems. He is the Chair-

Elect of the IEEE CAS Technical Committee on Multimedia

Systems and Applications. From 2001 to 2002, he served as a

Distinguished Lecturer of the IEEE CAS Society. He received

the Best Paper Award from the R.O.C. Computer Society in

1990 and 1994. Annually from 1991 to 1999, he received Long-

Term (Acer) Paper Awards. In 1992, he received the Best Paper

Award of the 1992 Asia-Pacific Conference on circuits and

systems in the VLSI design track. In 1993, he received the

Annual Paper Award of the Chinese Engineer Society. In 1996

and 2000, he received the Outstanding Research Award from

the National Science Council, and in 2000, the Dragon

Excellence Award from Acer. He is a member of Phi Tau Phi.

His current research interests are DSP architecture design,

video processor design, and video coding systems.


	Data Reuse Exploration for Low Power Motion Estimation Architecture Design in H.264 Encoder
	Abstract
	Introduction
	Data Reuse
	Off-Line Data Reuse
	On-Line Data Reuse

	Systematic Method of Low-Power Architecture Design
	Loop Analysis
	Architecture Mapping

	Design Examples
	Motion Estimation Algorithm of H.264
	Integer Motion Estimation
	Fractional Motion Estimation
	Ladder-Shaped Search Window Data Arrangement

	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


